• Users Online: 417
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Contacts Login 


 
 Table of Contents  
CORRESPONDENCE
Year : 2019  |  Volume : 32  |  Issue : 3  |  Page : 190

Can radiotherapy for breast cancer increase breast arterial calcification?


Department of Radiation Oncology, Kayseri Education and Research Hospital, Kayseri 38010, Turkey

Date of Web Publication18-Feb-2020

Correspondence Address:
Yasemin Benderli Cihan
Department of Radiation Oncology, Kayseri Education and Research Hospital, Kayseri 38010
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0970-258X.278680


How to cite this article:
Cihan YB. Can radiotherapy for breast cancer increase breast arterial calcification?. Natl Med J India 2019;32:190

How to cite this URL:
Cihan YB. Can radiotherapy for breast cancer increase breast arterial calcification?. Natl Med J India [serial online] 2019 [cited 2020 Nov 25];32:190. Available from: http://www.nmji.in/text.asp?2019/32/3/190/278680



It has been proven by randomized trials and meta-analyses that radiotherapy (RT) improves local control and survival in breast cancer. However, when RT is used for breast cancer, it is inevitable for adjacent healthy tissues and organs to be affected resulting in early and late side-effects. Early side-effects develop within the first 12 weeks of the initiation of RT while late side-effects develop months and years after RT is completed and are difficult to manage. These side-effects are mostly irreversible and have a negative impact on the quality of life of the patient.[1],[2]

RT can produce various effects in the vascular system of the breast tissue (endothelium of small and large vessels) in the acute and chronic phases. In the acute phase, they manifest as inflammation, vascular dilatation and local oedema. In the chronic phase, stenosis and occlusion of small vessels occurs together with fibrosis. In the large veins, muscle cells in the media layer disintegrate and lead to cystic medial necrosis. As a result, the vein wall weakens and ruptures. In the radiation-affected vascular endothelium, cytokines induce atherosclerosis by triggering an inflammatory process in which growth factors play a role.[1],[2],[3],[4],[5] In an experimental study, Fonkalsrud et al. found that radiation accelerated the atherosclerotic process as a result of a combination of some indirect causes such as obliteration in adventitial vasa vasora as well as direct damage such as intimal proliferation in the vascular wall structure, necrosis in the media layer and fibrosis in the adventitial layer.[3] A meta-analysis showed that RT reduces local recurrence in patients with early-stage breast cancer and a statistically significant increase in blood vessel-related mortality (p=0.0003) 10 years after RT. This analysis shows that RT causes vascular disease in the long term.[2] In the past 10 years, it has been shown that vascular damage and coronary artery injury have decreased due to advances in RT techniques. Chang et al. compared adjuvant RT in patients with breast cancer to the general population and found that the risk of acute coronary events was similar for both groups (hazard ratio 0.94; 95% CI 0.69-1). However, in a subgroup analysis of breast cancer survivors, this risk was increased in the non-exercising group (hazard ratio 2.74; CI 1.27–5.91). They emphasized that individual cardiac radiation dose and confirmatory studies were necessary.[6] While Darby et al. showed that the dose of breast RT is not above the threshold for occurrence for late heart failure,[7] Cuoma et al. reported increased side-effects on the heart depending on the dose.[8] A literature review suggests that developments in the treatment of breast cancer and the investigation of factors caused by coronary events—one of the long-term side- effects caused by these treatments—are becoming critical. Roos et al. found a direct correlation with the calcium value of the coronary artery before treatment with acute coronary events in patients receiving RT for breast cancer.[9] James et al. found no difference in the rate of cardiac side-effects seen in conventional and hypofraction RT schemes.[10] No study has examined the damage to vascular tissues; some studies have examined carotid arteries after RT.[11],[12] In their retrospective study, Woodward et al. compared both carotid arteries in patients who received supraclavicular RT treatment for breast cancer >8 years ago. They did not find a clinically significant stenosis and increase in intima-media thickness in the ipsilateral carotid artery.[11]

The prevalence of breast arterial calcification (BAC) is between 3% and 17.5%. The frequency of BAC increases with age. While it is seen in 9.1% of women under 50 years of age, its incidence is between 9% and 17% in those >65 years of age.[4] It has been reported that patients with arterial calcification in mammary tissue radiologically, have more frequent diabetes and hypertension.[8] BAC is known to be a harbinger and surrogate for the coronary arterial events.[13],[14] It is not known whether or not RT that is applied for breast cancer causes BAC or it causes an increase in BAC.

As a consequence, the vascular system of the breast is under the influence of RT directly and/or indirectly in patients who receive RT for breast cancer treatment. Although many studies reveal a relationship between arterial calcification detected by mammography and diabetes and hypertension, it is not known whether there is a relation between RT and these conditions. Therefore, it is necessary to clarify whether the increase of calcification in BAC-positive patients is related to RT.

Conflicts of interest. None declared



 
  References Top

1.
Cihan YB, Arsav V. The effects of hormonotherapy administered concurrent radiotherapy and trastuzumab on cardiac toxicity in rats. Turk Soc Cardiol 2014;14:328-33.  Back to cited text no. 1
    
2.
Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: An overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 2000;355:1757-70.  Back to cited text no. 2
    
3.
Fonkalsrud EW, Sanchez M, Zerubavel R, Mahoney A. Serial changes in arterial structure following radiation therapy. Surg Gynecol Obstet 1977; 145:395-400.  Back to cited text no. 3
    
4.
Reddy J, Son H, Smith SJ, Paultre F, Mosca L. Prevalence of breast arterial calcifications in an ethnically diverse population of women. Ann Epidemiol 2005; 15:344-50.  Back to cited text no. 4
    
5.
Woodward WA, Durand JB, Tucker SL, Strom EA, Perkins GH, Oh J, et al. Prospective analysis of carotid artery flow in breast cancer patients treated with supraclavicular irradiation 8 or more years previously: No increase in ipsilateral carotid stenosis after radiation noted. Cancer 2008;112:268-73.  Back to cited text no. 5
    
6.
Chang JS, Shin J, Park EC, Kim YB. Risk of cardiac disease after adjuvant radiation therapy among breast cancer survivors. Breast 2019;43:48-54.  Back to cited text no. 6
    
7.
Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 2013;368:987-98.  Back to cited text no. 7
    
8.
Cuomo JR, Javaheri SP, Sharma GK, Kapoor D, Berman AE, Weintraub NL. How to prevent and manage radiation-induced coronary artery disease. Heart 2018; 104: 1647-53.  Back to cited text no. 8
    
9.
Roos CT, van den Bogaard VA, Greuter MJ, Vliegenthart R, Schuit E, Langendijk JA, et al. Is the coronary artery calcium score associated with acute coronary events in breast cancer patients treated with radiotherapy? Radiother Oncol 2018;126: 170-6.  Back to cited text no. 9
    
10.
James M, Swadi S, Yi M, Johansson L, Robinson B, Dixit A. Ischaemic heart disease following conventional and hypofractionated radiation treatment in a contemporary breast cancer series. J Med Imaging Radiat Oncol 2018;62:425-31.  Back to cited text no. 10
    
11.
Woodward WA, Giordano SH, Duan Z, Hortobagyi GN, Buchholz TA. Supraclavicular radiation for breast cancer does not increase the 10-year risk of stroke. Cancer 2006; 106:2556-62.  Back to cited text no. 11
    
12.
Gujral DM, Shah BN, Chahal NS, Senior R, Harrington KJ, Nutting CM. Clinical features of radiation-induced carotid atherosclerosis. Clin Oncol (R Coll Radiol) 2014;26:94-102.  Back to cited text no. 12
    
13.
Topal U, Kaderli A, Topal NB, Özdemir B, Ye°ilbursa D, Cordan J, et al. Relationship between the arterial calcification detected in mammography and coronary artery disease. Eur J Radiol 2007;63:391-5.  Back to cited text no. 13
    
14.
McLenachan S, Camilleri F, Smith M, Newby DE, Williams MC. Breast arterial calcification on mammography and risk of coronary artery disease: A scot-heart sub- study. Clin Radiol 2019;74:421-8.  Back to cited text no. 14
    




 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
References

 Article Access Statistics
    Viewed322    
    Printed5    
    Emailed0    
    PDF Downloaded83    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]